

Eastern Renewable Generation Integration Study

April 8, 2013

Thermal Generator Properties

Thermal Generator Characteristics

EIPC assumptions

- Part-load heat rate shapes
- Min up/down times
- Ramp rates
- Forced and planned outage characteristics

Non-EIPC assumptions:

- Unit-specific FLHR from EPA CEMS data
- Startup and VO&M costs from Intertek APTECH

EIPC Thermal Assumptions

Category	Marginal Heat Rate (% of Max Capacity / % of FLHR)			Minimum Up Time	Minimum Down Time	Startup Costs	Ramp Rate (MW/min)	
	Step 1	Step 2	Step 3	Step 4	(Hours)	(Hours)	(\$/MW)	(11111)
СТ	100% / 100%				1	1	0	
СС	50% / 113%	67%/ 75%	83% / 86%	100% / 100%	6	8	35	10
Coal_ST < 600MW	50% / 106%	75%/ 90%	100% / 100%		24	12	45	3
Coal_ST > 600MW	30% / 110%	50% / 93%	75% / 95%	100% / 100%	24	12	45	3
Oil/Gas_ST < 600MW	30% /110%	50% /90%	75% / 96%	100% / 100%	10	8	40	6
Oil/Gas_ST > 600MW	20% / 110%	50% / 95%	75% / 98%	100% / 100%	10	8	40	6
Nuclear					168	168		

Example Generator Fuel Use Shapes

Example Generator Fuel Use Shapes

Example Generator Fuel Use Shapes

Average Heat Rates

Proposal:

- Use CEMS heat rate data where units can be matched
- Apply distribution of heat rates found from CEMS data where units cannot be matched

Example CEMS Heat Rate Distribution

Planned and Forced Outage Rates

- EIPC used region-specific planned- and forced-outage rates
- We propose to use plant-type-specific rates:

Туре	Forced Outage Rates		Forced Outage Repair Time (Hours)	Planned Outage Days/Year		
	EIPC	Proposed	Proposed	EIPC	Proposed	
Biomass	5-10%	7.5%	24	18.3-36.5	27	
CC	6%	6%	24	24.7-24.7	25	
Coal	4–8%	6%	72	25.2-35.3	30	
СТ	8-10%	9%	24	10.8-15.8	13	
Oil/Gas						
Boiler	7%	7%	48	32.1-32.1	32	
Hydro	5%	5%	24	0	0	
Nuclear	3–7%	5%	168	28.6–28.6	29	
PS	0%	5%	24	0	0	

Revisions

Intertek APTECH Data

- Statistical analysis of maintenance costs to quantify relative causes
 - Startup
 - VO&M costs
- Startup costs 2-3 times EIPC
- Steady-state VO&M costs lower than EIPC

Ramp Rates

- EIPC assumption is independent of plant size
- Revise to % of capacity/minute

Startup Costs

 Proposal: use startup costs based on lowerbound data from public APTECH report

	Non-Fuel			Baseload
	Startup Cost	Startup	Startup Fuel Amount	VO&M
Туре	(\$/MW Capacity)	Fuel Type	(MMBtu/MW Capacity)	(\$/MWh)
СТ	69	gas	0.9	0.6
CC	79	gas	4.7	1.0
Gas Boiler	86	gas	8.9	0.9
Coal	129	oil	14.5	2.8

Ramp Rates

	EIPC Ramp Rate	Assumed Plant	Calculated Ramp
Туре	(MW/min)	Capacity (MW)	Rate (%/min)
CT			
CC	10	200	5.0%
Oil/Gas_ST < 600MW	6	75	8.0%
Oil/Gas_ST > 600MW	6	800	0.8%
Coal_ST < 600MW	3	75	4.0%
Coal_ST > 600MW	3	800	0.4%

	Calculated EIPC Ramp	Proposed Ramp
Туре	Rate (%/min)	Rate (%/min)
СТ	-	8
CC	5	5
Gas Boiler	0.8–8	4
Coal	0.4–4	2

Other Generation Types

Characteristics for

- Biomass
- Gas IC
- Oil-fueled units (IC, CT)
- Pumped storage
- Nuclear

Fuel Prices

EIA Annual Energy Outlook forecast for 2020:

- Natural gas \$4.90/MMBtu
- Fuel Oil \$22.45/MMBtu
- o Coal \$2.52/MMBtu

Fuels not in EIA AEO:

- Biomass
- Nuclear

Generator Aggregation

Generator Aggregation

- Eastern Interconnect database currently contains:
 - 7,895 generating units (excluding wind and solar)
 - o 3,291 plants
 - 942,485 MW of thermal and hydro capacity

Generator Aggregation

Aggregate generation units by plant and type

Туре	Total Capacity (MW)	Number of Units	Number of Plants	Reduction (%)
Biomass	4,039	130	107	19%
CC	197,822	1,280	457	70%
Coal_ST	316,972	1,229	461	64%
Gas_GT	122,307	1,595	528	68%
Gas_IC	1,432	300	128	57%
Gas_ST	49,947	330	150	55%
Hydro	85,159	1,804	810	56%
Jet_Oil_GT	150	9	8	11%
Nuclear	113,684	122	71	44%
Oil_GT	17,658	464	207	55%
Oil_IC	2,301	394	245	38%
Oil_ST	10,268	112	79	29%
PS	20,666	115	29	75%
Waste HT_ST	78	11	11	0%
Total	942,485	7,566	3,040	60%

Commit Generators

- Committing generators removes the on/off decision and makes the optimization problem smaller
- Little downside if generators:
 - have very low minimum generation level and minimal startup costs (wind, hydro), or
 - are known to be committed (nuclear)
- Propose to commit wind, hydro, nuclear by default

Hydro Properties

Hydro Properties

- 85,159 MW in 1,804 units (810 unique plants)
- Minimum generation level?
- Economic dispatch vs. scheduled?
- Plan to establish monthly energy limits based on EIA generation data for 2006
 - Approximately 100 plants (1400 MW) are not available in EIA generation data
 - Will need to find a source for the missing energy limit data—ideas?

Thank You

Contact

Aaron.Townsend@nrel.gov

(303) 275-3272

Disclaimer

 This document is for discussion and development purposes only. Any data or statements contained in this document are subject to revision without notice. Do not cite or quote. Contact aaron.bloom@nrel.gov with any questions.